A.OLAP事務量大,但事務內(nèi)容比較簡單且重復率高
B.OLAP的最終數(shù)據(jù)來源與OLTP不一樣
C.OLTP面對的是決策人員和高層管理人員
D.OLTP以應用為核心,是應用驅(qū)動的
您可能感興趣的試卷
你可能感興趣的試題
A.OLAP主要是關于如何理解聚集的大量不同的數(shù)據(jù).它與OTAP應用程序不同
B.與OLAP應用程序不同,OLTP應用程序包含大量相對簡單的事務
C.OLAP的特點在于事務量大,但事務內(nèi)容比較簡單且重復率高
D.OLAP是以數(shù)據(jù)倉庫為基礎的,但其最終數(shù)據(jù)來源與OLTP一樣均來自底層的數(shù)據(jù)庫系統(tǒng),兩者面對的用戶是相同的
關于OLAP的特性,下面正確的是()
(1)快速性(2)可分析性(3)多維性(4)信息性(5)共享性
A.(1)(2)(3)
B.(2)(3)(4)
C.(1)(2)(3)(4)
D.(1)(2)(3)(4)(5)
A.在線性
B.對用戶的快速響應
C.互操作性
D.多維分析
A.粒度是指數(shù)據(jù)倉庫小數(shù)據(jù)單元的詳細程度和級別
B.數(shù)據(jù)越詳細,粒度就越小,級別也就越高
C.數(shù)據(jù)綜合度越高,粒度也就越大,級別也就越高
D.粒度的具體劃分將直接影響數(shù)據(jù)倉庫中的數(shù)據(jù)量以及查詢質(zhì)量
A.基本元數(shù)據(jù)與數(shù)據(jù)源,數(shù)據(jù)倉庫,數(shù)據(jù)集市和應用程序等結構相關的信息
B.基本元數(shù)據(jù)包括與企業(yè)相關的管理方面的數(shù)據(jù)和信息
C.基本元數(shù)據(jù)包括日志文件和簡歷執(zhí)行處理的時序調(diào)度信息
D.基本元數(shù)據(jù)包括關于裝載和更新處理,分析處理以及管理方面的信息
最新試題
使決策樹更深將確保更好的擬合度,但會降低魯棒性。
完整性,一致性,時效性,唯一性,有效性,準確性是衡量數(shù)據(jù)質(zhì)量的六個維度指標。
數(shù)據(jù)索引就像給每條數(shù)據(jù)裝了個信箱。
選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個值,并選擇最小化失真度量的值。
使用偏差較小的模型總是比偏差較大的模型更好。
給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因為SVM通常能夠在訓練集上實現(xiàn)更好的分類精度。
假設屬性的數(shù)量固定,則可以在時間上以線性方式學習基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
經(jīng)常跟管理層打交道并進行有效地關于商業(yè)領域的討論有助于數(shù)據(jù)科學項目的成功。
非結構化數(shù)據(jù)也可以使用關系型數(shù)據(jù)庫來存儲。
公司內(nèi)部收集的數(shù)據(jù)不存在需要考慮數(shù)據(jù)隱私的環(huán)節(jié)。