求在狀態(tài)
中算符的本征值。
您可能感興趣的試卷
你可能感興趣的試題
最新試題
效仿Einstein的做法,Born把波函數(shù)也視為向?qū)?chǎng),該場(chǎng)決定了粒子在某一向?qū)窂降模ǎ驅(qū)?chǎng)本身沒(méi)有能量和動(dòng)量。
?de Broglie將在自身質(zhì)心系中的粒子視為簡(jiǎn)諧振子,把質(zhì)心系和地面參考系之間的()變換代入簡(jiǎn)諧振動(dòng)的運(yùn)動(dòng)學(xué)方程就得到de Broglie物質(zhì)波。
?不考慮無(wú)微擾項(xiàng)時(shí),氦原子兩個(gè)電子總的波函數(shù)是反對(duì)稱(chēng)的,這樣兩個(gè)電子的空間波函數(shù)和自旋波函數(shù)就出現(xiàn)()種不同的情況。
已知W為對(duì)角化哈密頓量,o為任意物理量的算符,則能量表象的矩陣元(oW-Wo)nm為()。
?粒子的波函數(shù)為,則t時(shí)刻粒子出現(xiàn)在空間的概率為()。
熱輻射的峰值波長(zhǎng)與輻射體溫度之間的關(guān)系被維恩位移定律:表示,其中b=2.8978×10-3m·K。求人體熱輻射的峰值波長(zhǎng)(設(shè)體溫為37℃)。
?Heisenberg用他的量子化條件研究一維簡(jiǎn)諧振動(dòng),得到一維諧振子的動(dòng)能和勢(shì)能之和只是量子數(shù)n的函數(shù),這說(shuō)明處于定態(tài)n的諧振子的總能量()。
一維諧振子基態(tài)波函數(shù)為,式中,則諧振子在該態(tài)時(shí)勢(shì)能的平均值為()。
多世界解釋認(rèn)為人們測(cè)量時(shí)系統(tǒng)的波函數(shù)沒(méi)有坍縮,但觀測(cè)的一瞬間宇宙分裂為多個(gè)宇宙,不同宇宙中的同一個(gè)觀察者()進(jìn)行交流和通信。
?de Broglie認(rèn)為Bohr氫原子的軌道長(zhǎng)度應(yīng)該是電子波長(zhǎng)的()倍,由此導(dǎo)出角動(dòng)量量子化,進(jìn)而得到氫原子的Bohr能級(jí)公式。