填空題兩個文檔向量d1和d2的值為:d1=(1, 0, 3, 0, 2),d2=(3, 2, 0, 0, 1),則它們的余弦相似度為:()
您可能感興趣的試卷
最新試題
由于分類是回歸的一種特殊情況,因此邏輯回歸是線性回歸的一種特殊情況。
題型:判斷題
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過度擬合訓(xùn)練數(shù)據(jù)的潛在問題。
題型:判斷題
使決策樹更深將確保更好的擬合度,但會降低魯棒性。
題型:判斷題
當(dāng)反向傳播算法運(yùn)行到達(dá)到最小值時,無論初始權(quán)重是什么,總是會找到相同的解(即權(quán)重)。
題型:判斷題
由于決策樹學(xué)會了對離散值輸出而不是實值函數(shù)進(jìn)行分類,因此它們不可能過度擬合。
題型:判斷題
無論質(zhì)心的初始化如何,K-Means始終會給出相同的結(jié)果。
題型:判斷題
管理員不需要驗證就可以訪問數(shù)據(jù)存儲系統(tǒng)中的任何數(shù)據(jù),這符合數(shù)據(jù)安全的要求。
題型:判斷題
非結(jié)構(gòu)化數(shù)據(jù)也可以使用關(guān)系型數(shù)據(jù)庫來存儲。
題型:判斷題
最大似然估計的一個缺點(diǎn)是,在某些情況下(例如,多項式分布),它可能會返回零的概率估計。
題型:判斷題
給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因為SVM通常能夠在訓(xùn)練集上實現(xiàn)更好的分類精度。
題型:判斷題