您可能感興趣的試卷
你可能感興趣的試題
最新試題
假設(shè)屬性的數(shù)量固定,則可以在時(shí)間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類(lèi)器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
完整性,一致性,時(shí)效性,唯一性,有效性,準(zhǔn)確性是衡量數(shù)據(jù)質(zhì)量的六個(gè)維度指標(biāo)。
通常,當(dāng)試圖從大量觀察中學(xué)習(xí)具有少量狀態(tài)的HMM時(shí),我們幾乎總是可以通過(guò)允許更多隱藏狀態(tài)來(lái)增加訓(xùn)練數(shù)據(jù)的可能性。
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過(guò)度擬合訓(xùn)練數(shù)據(jù)的潛在問(wèn)題。
當(dāng)反向傳播算法運(yùn)行到達(dá)到最小值時(shí),無(wú)論初始權(quán)重是什么,總是會(huì)找到相同的解(即權(quán)重)。
要將工作申請(qǐng)分為兩類(lèi),并使用密度估計(jì)來(lái)檢測(cè)離職申請(qǐng)人,我們可以使用生成分類(lèi)器。
管理員不需要驗(yàn)證就可以訪問(wèn)數(shù)據(jù)存儲(chǔ)系統(tǒng)中的任何數(shù)據(jù),這符合數(shù)據(jù)安全的要求。
當(dāng)數(shù)據(jù)集標(biāo)簽錯(cuò)誤的數(shù)據(jù)點(diǎn)時(shí),隨機(jī)森林通常比AdaBoost更好。
無(wú)論質(zhì)心的初始化如何,K-Means始終會(huì)給出相同的結(jié)果。
由于分類(lèi)是回歸的一種特殊情況,因此邏輯回歸是線性回歸的一種特殊情況。