A.18.3
B.22.6
C.26.8
D.27.9
您可能感興趣的試卷
你可能感興趣的試題
A.0.821
B.1.224
C.1.458
D.0.716
A.1比特
B.2.6比特
C.3.2比特
D.3.8比特
A.傅立葉變換
B.特征加權
C.漸進抽樣
D.維歸約
A.2
B.3
C.3.5
D.5
A.特征提取
B.特征修改
C.映射數(shù)據(jù)到新的空間
D.特征構造
最新試題
使用正則表達式可以找到一個文本文件中所有可能出現(xiàn)的手機號碼。
給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因為SVM通常能夠在訓練集上實現(xiàn)更好的分類精度。
對于文本數(shù)據(jù)和多媒體數(shù)據(jù)進行特征提取是為了方便對于這類數(shù)據(jù)的觀察和理解。
最大似然估計的一個缺點是,在某些情況下(例如,多項式分布),它可能會返回零的概率估計。
管理員不需要驗證就可以訪問數(shù)據(jù)存儲系統(tǒng)中的任何數(shù)據(jù),這符合數(shù)據(jù)安全的要求。
數(shù)據(jù)壓縮與解壓縮可以使得數(shù)據(jù)處理的速度加快。
小數(shù)據(jù)集的數(shù)據(jù)處理最好也由計算機手段來完成。
完整性,一致性,時效性,唯一性,有效性,準確性是衡量數(shù)據(jù)質(zhì)量的六個維度指標。
通常,當試圖從大量觀察中學習具有少量狀態(tài)的HMM時,我們幾乎總是可以通過允許更多隱藏狀態(tài)來增加訓練數(shù)據(jù)的可能性。
數(shù)據(jù)收集中的拉模式需要通過定時的方式不斷地觸發(fā),才能源源不斷地獲取對應的數(shù)據(jù)。