A.頻繁子集挖掘
B.頻繁子圖挖掘
C.頻繁數(shù)據(jù)項(xiàng)挖掘
D.頻繁模式挖掘
您可能感興趣的試卷
你可能感興趣的試題
A.s=<{2,4},{3,5,6},{8}>,t=<{2},{3,6},{8}>
B.s=<{2,4},{3,5,6},{8}>,t=<{2},{8}>
C.s=<{1,2},{3,4}>,t=<{1},{2}>
D.s=<{2,4},{2,4}>,t=<{2},{4}>
A.1,2,3,4
B.1,2,3,5
C.1,2,4,5
D.1,3,4,5
A.無(wú)向無(wú)環(huán)
B.有向無(wú)環(huán)
C.有向有環(huán)
D.無(wú)向有環(huán)
A.OLAP和OLAM都基于客戶機(jī)/服務(wù)器模式,只有后者有與用戶的交互性
B.由于OLAM的立方體和用于OLAP的立方體有本質(zhì)的區(qū)別
C.基于WEB的OLAM是WEB技術(shù)與OLAM技術(shù)的結(jié)合
D.OLAM服務(wù)器通過(guò)用戶圖形借口接收用戶的分析指令,在元數(shù)據(jù)的知道下,對(duì)超級(jí)立方體作一定的操作
關(guān)于OLAP的特性,下面正確的是:()。
(1)快速性
(2)可分析性
(3)多維性
(4)信息性
(5)共享性
A.(1)(2)(3)
B.(2)(3)(4)
C.(1)(2)(3)(4)
D.(1)(2)(3)(4)(5)
最新試題
給定用于2類分類問(wèn)題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因?yàn)镾VM通常能夠在訓(xùn)練集上實(shí)現(xiàn)更好的分類精度。
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過(guò)度擬合訓(xùn)練數(shù)據(jù)的潛在問(wèn)題。
隨機(jī)梯度下降每次更新執(zhí)行的計(jì)算量少于批梯度下降。
當(dāng)反向傳播算法運(yùn)行到達(dá)到最小值時(shí),無(wú)論初始權(quán)重是什么,總是會(huì)找到相同的解(即權(quán)重)。
使用偏差較小的模型總是比偏差較大的模型更好。
數(shù)據(jù)存儲(chǔ)體系中并不牽扯計(jì)算機(jī)網(wǎng)絡(luò)這一環(huán)節(jié)。
公司內(nèi)部收集的數(shù)據(jù)不存在需要考慮數(shù)據(jù)隱私的環(huán)節(jié)。
數(shù)據(jù)收集中的拉模式需要通過(guò)定時(shí)的方式不斷地觸發(fā),才能源源不斷地獲取對(duì)應(yīng)的數(shù)據(jù)。
數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問(wèn)是線性訪問(wèn),但是做了索引的數(shù)據(jù)訪問(wèn)會(huì)成倍的降低訪問(wèn)時(shí)間。
完整性,一致性,時(shí)效性,唯一性,有效性,準(zhǔn)確性是衡量數(shù)據(jù)質(zhì)量的六個(gè)維度指標(biāo)。