單項(xiàng)選擇題關(guān)于混合模型聚類算法的優(yōu)缺點(diǎn),下面說法正確的是()。

A.當(dāng)簇只包含少量數(shù)據(jù)點(diǎn),或者數(shù)據(jù)點(diǎn)近似協(xié)線性時(shí),混合模型也能很好地處理
B.混合模型比K均值或模糊c均值更一般,因?yàn)樗梢允褂酶鞣N類型的分布
C.混合模型很難發(fā)現(xiàn)不同大小和橢球形狀的簇
D.混合模型在有噪聲和離群點(diǎn)時(shí)不會存在問題


您可能感興趣的試卷

你可能感興趣的試題

1.單項(xiàng)選擇題以下哪個(gè)聚類算法不是屬于基于原型的聚類()。

A.模糊c均值
B.EM算法
C.SOM
D.CLIQUE

2.單項(xiàng)選擇題以下屬于可伸縮聚類算法的是()。

A.CURE
B.DENCLUE
C.CLIQUE
D.OPOSSUM

5.單項(xiàng)選擇題關(guān)于K均值和DBSCAN的比較,以下說法不正確的是()。

A.K均值丟棄被它識別為噪聲的對象,而DBSCAN一般聚類所有對象
B.K均值使用簇的基于原型的概念,而DBSCAN使用基于密度的概念
C.K均值很難處理非球形的簇和不同大小的簇,DBSCAN可以處理不同大小和不同形狀的簇
D.K均值可以發(fā)現(xiàn)不是明顯分離的簇,即便簇有重疊也可以發(fā)現(xiàn),但是DBSCAN會合并有重疊的簇

最新試題

最大似然估計(jì)的一個(gè)缺點(diǎn)是,在某些情況下(例如,多項(xiàng)式分布),它可能會返回零的概率估計(jì)。

題型:判斷題

要將工作申請分為兩類,并使用密度估計(jì)來檢測離職申請人,我們可以使用生成分類器。

題型:判斷題

小數(shù)據(jù)集的數(shù)據(jù)處理最好也由計(jì)算機(jī)手段來完成。

題型:判斷題

數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問是線性訪問,但是做了索引的數(shù)據(jù)訪問會成倍的降低訪問時(shí)間。

題型:判斷題

根據(jù)數(shù)據(jù)科學(xué)家與數(shù)據(jù)工程師對于問題的理解并相互討論,然后確定需要收集數(shù)據(jù)的范圍以及種類,然后數(shù)據(jù)工程師使用數(shù)據(jù)收集工具,架構(gòu),甚至編程的形式來進(jìn)行數(shù)據(jù)收集的工作,然后并把數(shù)據(jù)收集的數(shù)據(jù)放置到對應(yīng)的存儲系統(tǒng)。

題型:判斷題

數(shù)據(jù)索引就像給每條數(shù)據(jù)裝了個(gè)信箱。

題型:判斷題

非結(jié)構(gòu)化數(shù)據(jù)也可以使用關(guān)系型數(shù)據(jù)庫來存儲。

題型:判斷題

訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過度擬合訓(xùn)練數(shù)據(jù)的潛在問題。

題型:判斷題

無論質(zhì)心的初始化如何,K-Means始終會給出相同的結(jié)果。

題型:判斷題

由于分類是回歸的一種特殊情況,因此邏輯回歸是線性回歸的一種特殊情況。

題型:判斷題