A.二分K均值
B.MST
C.Chameleon
D.組平均
您可能感興趣的試卷
你可能感興趣的試題
A.MIN(單鏈)
B.MAX(全鏈)
C.組平均
D.Chameleon
A.高維性
B.規(guī)模
C.稀疏性
D.噪聲和離群點
A.精度
B.Rand統(tǒng)計量
C.Jaccard系數(shù)
D.召回率
A.輪廓系數(shù)
B.共性分類相關(guān)系數(shù)
C.熵
D.F度量
A.規(guī)則集的表達能力遠不如決策樹好
B.基于規(guī)則的分類器都對屬性空間進行直線劃分,并將類指派到每個劃分
C.無法被用來產(chǎn)生更易于解釋的描述性模型
D.非常適合處理類分布不平衡的數(shù)據(jù)集
最新試題
無論質(zhì)心的初始化如何,K-Means始終會給出相同的結(jié)果。
使決策樹更深將確保更好的擬合度,但會降低魯棒性。
任務(wù)調(diào)度系統(tǒng)的設(shè)計與實現(xiàn)才能使得數(shù)據(jù)收集工作可以不間斷地按照既定的目標從目標源獲取數(shù)據(jù)。
任何對數(shù)據(jù)處理與存儲系統(tǒng)的操作均需要記錄,這符合數(shù)據(jù)安全的要求。
根據(jù)數(shù)據(jù)科學(xué)家與數(shù)據(jù)工程師對于問題的理解并相互討論,然后確定需要收集數(shù)據(jù)的范圍以及種類,然后數(shù)據(jù)工程師使用數(shù)據(jù)收集工具,架構(gòu),甚至編程的形式來進行數(shù)據(jù)收集的工作,然后并把數(shù)據(jù)收集的數(shù)據(jù)放置到對應(yīng)的存儲系統(tǒng)。
隨機梯度下降每次更新執(zhí)行的計算量少于批梯度下降。
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過度擬合訓(xùn)練數(shù)據(jù)的潛在問題。
數(shù)據(jù)壓縮與解壓縮可以使得數(shù)據(jù)處理的速度加快。
通常,當(dāng)試圖從大量觀察中學(xué)習(xí)具有少量狀態(tài)的HMM時,我們幾乎總是可以通過允許更多隱藏狀態(tài)來增加訓(xùn)練數(shù)據(jù)的可能性。
完整性,一致性,時效性,唯一性,有效性,準確性是衡量數(shù)據(jù)質(zhì)量的六個維度指標。