A.數(shù)據(jù)清理
B.數(shù)據(jù)集成
C.數(shù)據(jù)變換
D.數(shù)據(jù)歸約
您可能感興趣的試卷
你可能感興趣的試題
A.去掉數(shù)據(jù)中的噪聲
B.對數(shù)據(jù)進(jìn)行匯總和聚集
C.使用概念分層,用高層次概念替換低層次“原始”數(shù)據(jù)
D.將屬性按比例縮放,使之落入一個(gè)小的特定區(qū)間
A.填補(bǔ)數(shù)據(jù)種的空缺值
B.集成多個(gè)數(shù)據(jù)源的數(shù)據(jù)
C.得到數(shù)據(jù)集的壓縮表示
D.規(guī)范化數(shù)據(jù)
A.概念分層
B.離散化
C.分箱
D.直方圖
A.孤立點(diǎn)
B.空缺值
C.測量變量中的隨即錯(cuò)誤或偏差
D.數(shù)據(jù)變換引起的錯(cuò)誤
A.空間填充曲線
B.散點(diǎn)圖矩陣
C.平行坐標(biāo)
D.圓弓分割
最新試題
管理員不需要驗(yàn)證就可以訪問數(shù)據(jù)存儲系統(tǒng)中的任何數(shù)據(jù),這符合數(shù)據(jù)安全的要求。
選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個(gè)值,并選擇最小化失真度量的值。
任何對數(shù)據(jù)處理與存儲系統(tǒng)的操作均需要記錄,這符合數(shù)據(jù)安全的要求。
要將工作申請分為兩類,并使用密度估計(jì)來檢測離職申請人,我們可以使用生成分類器。
當(dāng)數(shù)據(jù)集標(biāo)簽錯(cuò)誤的數(shù)據(jù)點(diǎn)時(shí),隨機(jī)森林通常比AdaBoost更好。
數(shù)據(jù)復(fù)制或者備份均是為了從提高數(shù)據(jù)并發(fā)這個(gè)角度來設(shè)計(jì)和實(shí)現(xiàn)的。
數(shù)據(jù)索引就像給每條數(shù)據(jù)裝了個(gè)信箱。
任務(wù)調(diào)度系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)才能使得數(shù)據(jù)收集工作可以不間斷地按照既定的目標(biāo)從目標(biāo)源獲取數(shù)據(jù)。
由于分類是回歸的一種特殊情況,因此邏輯回歸是線性回歸的一種特殊情況。
無論質(zhì)心的初始化如何,K-Means始終會給出相同的結(jié)果。