A.信息處理
B.互聯(lián)網(wǎng)搜索
C.分析處理
D.數(shù)據(jù)挖掘
您可能感興趣的試卷
你可能感興趣的試題
A.1-100M
B.100M-10G
C.10-1000G
D.100GB-數(shù)TB
A.頂點(diǎn)方體
B.方體的格
C.基本方體
D.維
A.上卷(roll-up)
B.選擇(select)
C.切片(slice)
D.轉(zhuǎn)軸(pivot)
A.上卷
B.下鉆
C.切塊
D.轉(zhuǎn)軸
A.分布的
B.代數(shù)的
C.整體的
D.混合的
最新試題
當(dāng)反向傳播算法運(yùn)行到達(dá)到最小值時(shí),無(wú)論初始權(quán)重是什么,總是會(huì)找到相同的解(即權(quán)重)。
如果P(A B)= P(A),則P(A∩B)= P(A)P(B)。
任務(wù)調(diào)度系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)才能使得數(shù)據(jù)收集工作可以不間斷地按照既定的目標(biāo)從目標(biāo)源獲取數(shù)據(jù)。
假設(shè)屬性的數(shù)量固定,則可以在時(shí)間上以線(xiàn)性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類(lèi)器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
對(duì)于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對(duì)于這類(lèi)數(shù)據(jù)的觀察和理解。
數(shù)據(jù)索引就像給每條數(shù)據(jù)裝了個(gè)信箱。
使決策樹(shù)更深將確保更好的擬合度,但會(huì)降低魯棒性。
當(dāng)數(shù)據(jù)集標(biāo)簽錯(cuò)誤的數(shù)據(jù)點(diǎn)時(shí),隨機(jī)森林通常比AdaBoost更好。
由于決策樹(shù)學(xué)會(huì)了對(duì)離散值輸出而不是實(shí)值函數(shù)進(jìn)行分類(lèi),因此它們不可能過(guò)度擬合。
非結(jié)構(gòu)化數(shù)據(jù)也可以使用關(guān)系型數(shù)據(jù)庫(kù)來(lái)存儲(chǔ)。