您可能感興趣的試卷
你可能感興趣的試題
A.布爾關(guān)聯(lián)規(guī)則
B.單維關(guān)聯(lián)規(guī)則
C.多維關(guān)聯(lián)規(guī)則
D.多層關(guān)聯(lián)規(guī)則
A.布爾關(guān)聯(lián)規(guī)則
B.單層關(guān)聯(lián)規(guī)則
C.多維關(guān)聯(lián)規(guī)則
D.多層關(guān)聯(lián)規(guī)則
最新試題
假設(shè)屬性的數(shù)量固定,則可以在時間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
由于決策樹學(xué)會了對離散值輸出而不是實值函數(shù)進(jìn)行分類,因此它們不可能過度擬合。
無論質(zhì)心的初始化如何,K-Means始終會給出相同的結(jié)果。
數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問是線性訪問,但是做了索引的數(shù)據(jù)訪問會成倍的降低訪問時間。
數(shù)據(jù)存儲體系中并不牽扯計算機(jī)網(wǎng)絡(luò)這一環(huán)節(jié)。
給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因為SVM通常能夠在訓(xùn)練集上實現(xiàn)更好的分類精度。
當(dāng)反向傳播算法運行到達(dá)到最小值時,無論初始權(quán)重是什么,總是會找到相同的解(即權(quán)重)。
選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個值,并選擇最小化失真度量的值。
由于分類是回歸的一種特殊情況,因此邏輯回歸是線性回歸的一種特殊情況。
根據(jù)數(shù)據(jù)科學(xué)家與數(shù)據(jù)工程師對于問題的理解并相互討論,然后確定需要收集數(shù)據(jù)的范圍以及種類,然后數(shù)據(jù)工程師使用數(shù)據(jù)收集工具,架構(gòu),甚至編程的形式來進(jìn)行數(shù)據(jù)收集的工作,然后并把數(shù)據(jù)收集的數(shù)據(jù)放置到對應(yīng)的存儲系統(tǒng)。