A.探索性數(shù)據(jù)分析
B.建模描述
C.預(yù)測(cè)建模
D.尋找模式和規(guī)則
您可能感興趣的試卷
你可能感興趣的試題
A.分類
B.聚類
C.關(guān)聯(lián)分析
D.隱馬爾可夫鏈
A.關(guān)聯(lián)規(guī)則發(fā)現(xiàn)
B.聚類
C.分類
D.自然語(yǔ)言處理
最新試題
當(dāng)MAP中使用的先驗(yàn)是參數(shù)空間上的統(tǒng)一先驗(yàn)時(shí),MAP估計(jì)等于ML估計(jì)。
小數(shù)據(jù)集的數(shù)據(jù)處理最好也由計(jì)算機(jī)手段來完成。
對(duì)于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對(duì)于這類數(shù)據(jù)的觀察和理解。
假設(shè)屬性的數(shù)量固定,則可以在時(shí)間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
由于決策樹學(xué)會(huì)了對(duì)離散值輸出而不是實(shí)值函數(shù)進(jìn)行分類,因此它們不可能過度擬合。
數(shù)據(jù)存儲(chǔ)體系中并不牽扯計(jì)算機(jī)網(wǎng)絡(luò)這一環(huán)節(jié)。
使決策樹更深將確保更好的擬合度,但會(huì)降低魯棒性。
支持向量機(jī)不適合大規(guī)模數(shù)據(jù)。
要將工作申請(qǐng)分為兩類,并使用密度估計(jì)來檢測(cè)離職申請(qǐng)人,我們可以使用生成分類器。
通過統(tǒng)計(jì)學(xué)可以推測(cè)擲兩個(gè)撒子同時(shí)選中3點(diǎn)的幾率。