設(shè)體系處于態(tài),求
(1)的可能測(cè)值及其平均值。
(2)的可能測(cè)值及相應(yīng)的幾率。
(3)的可能測(cè)值。
您可能感興趣的試卷
你可能感興趣的試題
求自旋角動(dòng)量方向的投影
本征值和所屬的本征函數(shù)。
在這些本征態(tài)中,測(cè)量有哪些可能值?這些可能值各以多大的幾率出現(xiàn)?的平均值是多少?
求的本征值和所屬的本征函數(shù)。
求在自旋態(tài)的測(cè)不準(zhǔn)關(guān)系:
最新試題
設(shè)諧振子的初態(tài)為基態(tài)和第一激發(fā)態(tài)的疊加態(tài):(1)求出歸一化常數(shù)A;(2)求出諧振子任意時(shí)刻的狀態(tài);(3)計(jì)算在態(tài)中能量的期待值。
?Heisenberg矩陣力學(xué)的力學(xué)量隨時(shí)間變化,而量子態(tài)不隨時(shí)間變化,由此可知Heisenberg矩陣力學(xué)實(shí)質(zhì)上是()繪景下能量表象的量子力學(xué)。
Dirac發(fā)現(xiàn)兩個(gè)物理量的對(duì)易子xy-yx等于()乘以這兩個(gè)物理量的經(jīng)典泊松括號(hào){x,y}。
當(dāng)α=Ω=0時(shí),寫(xiě)出能量本征值和相應(yīng)的本征態(tài)。
已知W為對(duì)角化哈密頓量,o為任意物理量的算符,則能量表象的矩陣元(oW-Wo)nm為()。
應(yīng)用對(duì)應(yīng)原理,從Einstein的()可以唯像地估算光譜線的強(qiáng)度。
?粒子的波函數(shù)為,則t時(shí)刻粒子出現(xiàn)在空間的概率為()。
?Bohm提出了簡(jiǎn)化版的量子態(tài)糾纏態(tài),即兩個(gè)自旋為()原子的糾纏態(tài)。
波長(zhǎng)為λ=0.01nm的X射線光子與靜止的電子發(fā)生碰撞。在與入射方向垂直的方向上觀察時(shí),散射X射線的波長(zhǎng)為多大?碰撞后電子獲得的能量是多少eV?
?de Broglie將在自身質(zhì)心系中的粒子視為簡(jiǎn)諧振子,把質(zhì)心系和地面參考系之間的()變換代入簡(jiǎn)諧振動(dòng)的運(yùn)動(dòng)學(xué)方程就得到de Broglie物質(zhì)波。