問(wèn)答題

設(shè)諧振子的初態(tài)為基態(tài)和第一激發(fā)態(tài)的疊加態(tài):

(1)求出歸一化常數(shù)A;
(2)求出諧振子任意時(shí)刻的狀態(tài);

(3)計(jì)算在態(tài)中能量的期待值。


您可能感興趣的試卷

最新試題

?Heisenberg用他的量子化條件研究一維簡(jiǎn)諧振動(dòng),得到一維諧振子的動(dòng)能和勢(shì)能之和只是量子數(shù)n的函數(shù),這說(shuō)明處于定態(tài)n的諧振子的總能量()。

題型:?jiǎn)雾?xiàng)選擇題

多世界解釋認(rèn)為人們測(cè)量時(shí)系統(tǒng)的波函數(shù)沒(méi)有坍縮,但觀測(cè)的一瞬間宇宙分裂為多個(gè)宇宙,不同宇宙中的同一個(gè)觀察者()進(jìn)行交流和通信。

題型:?jiǎn)雾?xiàng)選擇題

?Bohr從定態(tài)假說(shuō)和躍遷假說(shuō)出發(fā),使用了()原理建立完整的氫原子理論。

題型:?jiǎn)雾?xiàng)選擇題

?de Broglie認(rèn)為Bohr氫原子的軌道長(zhǎng)度應(yīng)該是電子波長(zhǎng)的()倍,由此導(dǎo)出角動(dòng)量量子化,進(jìn)而得到氫原子的Bohr能級(jí)公式。

題型:?jiǎn)雾?xiàng)選擇題

設(shè)電子處于動(dòng)量為的態(tài),將哈密頓量中的作為微擾,寫出能量本征值和本征函數(shù)到一級(jí)近似。

題型:?jiǎn)柎痤}

利用Schr?dinger方程求解Stark效應(yīng)簡(jiǎn)并微擾問(wèn)題,歸結(jié)為求解()矩陣的本征值。

題型:?jiǎn)雾?xiàng)選擇題

?Bohr互補(bǔ)性原理是哥本哈根解釋的兩個(gè)原理之一,依此原理經(jīng)典概念描述的相互矛盾的物理現(xiàn)象()出現(xiàn)在同一實(shí)驗(yàn)中。

題型:?jiǎn)雾?xiàng)選擇題

當(dāng)α≠0,Ω≠0時(shí),寫出能量本征值和相應(yīng)的本征態(tài)。

題型:?jiǎn)柎痤}

一維諧振子基態(tài)波函數(shù)為,式中,則諧振子在該態(tài)時(shí)勢(shì)能的平均值為()。

題型:?jiǎn)雾?xiàng)選擇題

?Bohm提出了簡(jiǎn)化版的量子態(tài)糾纏態(tài),即兩個(gè)自旋為()原子的糾纏態(tài)。

題型:?jiǎn)雾?xiàng)選擇題