A.系數(shù)
B.幾率
C.Cohen度量
D.興趣因子
您可能感興趣的試卷
你可能感興趣的試題
A.頻繁子集挖掘
B.頻繁子圖挖掘
C.頻繁數(shù)據(jù)項挖掘
D.頻繁模式挖掘
A.s=<{2,4},{3,5,6},{8}>,t=<{2},{3,6},{8}>
B.s=<{2,4},{3,5,6},{8}>,t=<{2},{8}>
C.s=<{1,2},{3,4}>,t=<{1},{2}>
D.s=<{2,4},{2,4}>,t=<{2},{4}>
A.1,2,3,4
B.1,2,3,5
C.1,2,4,5
D.1,3,4,5
A.無向無環(huán)
B.有向無環(huán)
C.有向有環(huán)
D.無向有環(huán)
A.OLAP和OLAM都基于客戶機/服務器模式,只有后者有與用戶的交互性
B.由于OLAM的立方體和用于OLAP的立方體有本質(zhì)的區(qū)別
C.基于WEB的OLAM是WEB技術(shù)與OLAM技術(shù)的結(jié)合
D.OLAM服務器通過用戶圖形借口接收用戶的分析指令,在元數(shù)據(jù)的知道下,對超級立方體作一定的操作
最新試題
由于決策樹學會了對離散值輸出而不是實值函數(shù)進行分類,因此它們不可能過度擬合。
數(shù)據(jù)復制或者備份均是為了從提高數(shù)據(jù)并發(fā)這個角度來設(shè)計和實現(xiàn)的。
由于分類是回歸的一種特殊情況,因此邏輯回歸是線性回歸的一種特殊情況。
通常,當試圖從大量觀察中學習具有少量狀態(tài)的HMM時,我們幾乎總是可以通過允許更多隱藏狀態(tài)來增加訓練數(shù)據(jù)的可能性。
無論質(zhì)心的初始化如何,K-Means始終會給出相同的結(jié)果。
數(shù)據(jù)收集中的拉模式需要通過定時的方式不斷地觸發(fā),才能源源不斷地獲取對應的數(shù)據(jù)。
根據(jù)數(shù)據(jù)科學家與數(shù)據(jù)工程師對于問題的理解并相互討論,然后確定需要收集數(shù)據(jù)的范圍以及種類,然后數(shù)據(jù)工程師使用數(shù)據(jù)收集工具,架構(gòu),甚至編程的形式來進行數(shù)據(jù)收集的工作,然后并把數(shù)據(jù)收集的數(shù)據(jù)放置到對應的存儲系統(tǒng)。
如果P(A B)= P(A),則P(A∩B)= P(A)P(B)。
假設(shè)屬性的數(shù)量固定,則可以在時間上以線性方式學習基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問是線性訪問,但是做了索引的數(shù)據(jù)訪問會成倍的降低訪問時間。