A.無序規(guī)則
B.窮舉規(guī)則
C.互斥規(guī)則
D.有序規(guī)則
您可能感興趣的試卷
你可能感興趣的試題
A.基于類的排序方案
B.基于規(guī)則的排序方案
C.基于度量的排序方案
D.基于規(guī)格的排序方案
A.冗余屬性不會(huì)對(duì)決策樹的準(zhǔn)確率造成不利的影響
B.子樹可能在決策樹中重復(fù)多次
C.決策樹算法對(duì)于噪聲的干擾非常敏感
D.尋找最佳決策樹是NP完全問題
A.KNN
B.SVM
C.Bayes
D.神經(jīng)網(wǎng)絡(luò)
A.DBSCAN
B.C4.5
C.K-Mean
D.EM
A.與同一時(shí)期其他數(shù)據(jù)對(duì)比
B.可視化
C.基于模板的方法
D.主觀興趣度量
最新試題
最大似然估計(jì)的一個(gè)缺點(diǎn)是,在某些情況下(例如,多項(xiàng)式分布),它可能會(huì)返回零的概率估計(jì)。
管理員不需要驗(yàn)證就可以訪問數(shù)據(jù)存儲(chǔ)系統(tǒng)中的任何數(shù)據(jù),這符合數(shù)據(jù)安全的要求。
對(duì)于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對(duì)于這類數(shù)據(jù)的觀察和理解。
無論質(zhì)心的初始化如何,K-Means始終會(huì)給出相同的結(jié)果。
當(dāng)數(shù)據(jù)集標(biāo)簽錯(cuò)誤的數(shù)據(jù)點(diǎn)時(shí),隨機(jī)森林通常比AdaBoost更好。
給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因?yàn)镾VM通常能夠在訓(xùn)練集上實(shí)現(xiàn)更好的分類精度。
隨機(jī)梯度下降每次更新執(zhí)行的計(jì)算量少于批梯度下降。
任務(wù)調(diào)度系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)才能使得數(shù)據(jù)收集工作可以不間斷地按照既定的目標(biāo)從目標(biāo)源獲取數(shù)據(jù)。
通常,當(dāng)試圖從大量觀察中學(xué)習(xí)具有少量狀態(tài)的HMM時(shí),我們幾乎總是可以通過允許更多隱藏狀態(tài)來增加訓(xùn)練數(shù)據(jù)的可能性。
數(shù)據(jù)存儲(chǔ)體系中并不牽扯計(jì)算機(jī)網(wǎng)絡(luò)這一環(huán)節(jié)。