對(duì)易式等于(m,n為任意正整數(shù))()
A.A
B.B
C.C
D.D
您可能感興趣的試卷
你可能感興趣的試題
對(duì)易式等于()
A.A
B.B
C.C
D.D
對(duì)易關(guān)系等于()
A.A
B.B
C.C
D.D
對(duì)易關(guān)系等于()
A.A
B.B
C.C
D.D
對(duì)易關(guān)系等于()
A.A
B.B
C.C
D.D
對(duì)易關(guān)系等于()
A.A
B.B
C.C
D.D
最新試題
?de Broglie將在自身質(zhì)心系中的粒子視為簡諧振子,把質(zhì)心系和地面參考系之間的()變換代入簡諧振動(dòng)的運(yùn)動(dòng)學(xué)方程就得到de Broglie物質(zhì)波。
一維諧振子基態(tài)波函數(shù)為,式中,則諧振子在該態(tài)時(shí)勢(shì)能的平均值為()。
?de Broglie認(rèn)為Bohr氫原子的軌道長度應(yīng)該是電子波長的()倍,由此導(dǎo)出角動(dòng)量量子化,進(jìn)而得到氫原子的Bohr能級(jí)公式。
?Bohr互補(bǔ)性原理是哥本哈根解釋的兩個(gè)原理之一,依此原理經(jīng)典概念描述的相互矛盾的物理現(xiàn)象()出現(xiàn)在同一實(shí)驗(yàn)中。
設(shè)諧振子的初態(tài)為基態(tài)和第一激發(fā)態(tài)的疊加態(tài):(1)求出歸一化常數(shù)A;(2)求出諧振子任意時(shí)刻的狀態(tài);(3)計(jì)算在態(tài)中能量的期待值。
?Heisenberg用他的量子化條件研究一維簡諧振動(dòng),得到一維諧振子的動(dòng)能和勢(shì)能之和只是量子數(shù)n的函數(shù),這說明處于定態(tài)n的諧振子的總能量()。
?不考慮無微擾項(xiàng)時(shí),氦原子兩個(gè)電子總的波函數(shù)是反對(duì)稱的,這樣兩個(gè)電子的空間波函數(shù)和自旋波函數(shù)就出現(xiàn)()種不同的情況。
一維運(yùn)動(dòng)的粒子被束縛在0<x<a的范圍內(nèi),其波函數(shù)為,則粒子在0到a/2區(qū)域內(nèi)出現(xiàn)的概率為()。
多世界解釋認(rèn)為人們測(cè)量時(shí)系統(tǒng)的波函數(shù)沒有坍縮,但觀測(cè)的一瞬間宇宙分裂為多個(gè)宇宙,不同宇宙中的同一個(gè)觀察者()進(jìn)行交流和通信。
利用Schr?dinger方程求解Stark效應(yīng)簡并微擾問題,歸結(jié)為求解()矩陣的本征值。