體系處于狀態(tài)ψ=Ccoskx,則體系的動(dòng)量取值為()
A.A
B.B
C.C
D.D
您可能感興趣的試卷
你可能感興趣的試題
設(shè)體系處于狀態(tài),該體系的能量的平均值為()
A.A
B.B
C.C
D.D
設(shè)體系處于狀態(tài),該體系的角動(dòng)量Z分量的平均值為()
A.A
B.B
C.C
D.D
設(shè)體系處于狀態(tài),該體系的角動(dòng)量Z分量的取值及相應(yīng)幾率分別為()
A.A
B.B
C.C
D.D
設(shè)體系處于狀態(tài),該體系的角動(dòng)量的取值及相應(yīng)幾率分別為()
A.A
B.B
C.C
D.D
設(shè)體系處于狀態(tài),則該體系的能量取值及取值幾率分別為()
A.A
B.B
C.C
D.D
最新試題
?Bohm提出了簡(jiǎn)化版的量子態(tài)糾纏態(tài),即兩個(gè)自旋為()原子的糾纏態(tài)。
波長(zhǎng)為λ=0.01nm的X射線光子與靜止的電子發(fā)生碰撞。在與入射方向垂直的方向上觀察時(shí),散射X射線的波長(zhǎng)為多大?碰撞后電子獲得的能量是多少eV?
Einstein對(duì)比了短波低能量密度時(shí)的黑體輻射和n個(gè)原子組成的粒子體系的(),提出了光量子假設(shè)。
?Heisenberg矩陣力學(xué)的力學(xué)量隨時(shí)間變化,而量子態(tài)不隨時(shí)間變化,由此可知Heisenberg矩陣力學(xué)實(shí)質(zhì)上是()繪景下能量表象的量子力學(xué)。
應(yīng)用對(duì)應(yīng)原理,從Einstein的()可以唯像地估算光譜線的強(qiáng)度。
?由經(jīng)典物理的Newton定律和Maxwell電磁理論,原子會(huì)不穩(wěn)定的,電子()坍縮到原子核。
設(shè)諧振子的初態(tài)為基態(tài)和第一激發(fā)態(tài)的疊加態(tài):(1)求出歸一化常數(shù)A;(2)求出諧振子任意時(shí)刻的狀態(tài);(3)計(jì)算在態(tài)中能量的期待值。
?de Broglie將在自身質(zhì)心系中的粒子視為簡(jiǎn)諧振子,把質(zhì)心系和地面參考系之間的()變換代入簡(jiǎn)諧振動(dòng)的運(yùn)動(dòng)學(xué)方程就得到de Broglie物質(zhì)波。
?de Broglie認(rèn)為Bohr氫原子的軌道長(zhǎng)度應(yīng)該是電子波長(zhǎng)的()倍,由此導(dǎo)出角動(dòng)量量子化,進(jìn)而得到氫原子的Bohr能級(jí)公式。
Dirac發(fā)現(xiàn)兩個(gè)物理量的對(duì)易子xy-yx等于()乘以這兩個(gè)物理量的經(jīng)典泊松括號(hào){x,y}。